Efficient implicit integration for finite-strain viscoplasticity with a nested multiplicative split
نویسندگان
چکیده
منابع مشابه
Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration
This article deals with a viscoplastic material model of overstress type. The model is based on a multiplicative decomposition of the deformation gradient into elastic and inelastic part. An additional multiplicative decomposition of inelastic part is used to describe a nonlinear kinematic hardening of Armstrong-Frederick type. Two implicit time-stepping methods are adopted for numerical integr...
متن کاملGeometric integrators for multiplicative viscoplasticity: analysis of error accumulation
The inelastic incompressibility is a typical feature of metal plasticity/viscoplasticity. Over the last decade, there has been a great amount of research related to construction of numerical integration algorithms which exactly preserve this geometric property. In this paper we examine, both numerically and mathematically, the excellent accuracy and convergence characteristics of such geometric...
متن کاملAn Efficient Strain Based Cylindrical Shell Finite Element
The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...
متن کاملThe streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation
We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2016
ISSN: 0045-7825
DOI: 10.1016/j.cma.2016.03.045